11 Amazing Animals That Improve Your Health

These hungry insect larvae are sterile, work quickly and also cost less than traditional treatments.

"For just a few dollars and in just a few days you can do what months of treatment and tens of thousands of dollars could not," Maeyens said.

Goat-Made Spider Silk

We've all heard of Spider-Man -- but how about a spider-goat?

These transgenetic goats are very unique because they produce something out of the ordinary: spider silk. The same substance that makes up spider webs is created in their milk glands.

Spider silk is referred to by many scientists as bio-steel. Much like in the Spider-Man movies, spider silk has super tensile strength. If made in large quantities and threaded together researchers say it would be strong enough to produce bullet proof vests, parachute cords or to tether airplanes to aircraft carriers.

Spider silk can also be used to make artificial ligaments and tendons that support tissue, bone and nerve cells, holding them steady while they grow. These artificial silk parts then fall apart gradually, after the cells have been given enough time to grow.

But why goats? Spiders, unlike silk worms, tend to eat each other when placed together in large numbers. So scientists came up with a solution.

"The process is conceptually very simple. The spider silk gene for the silk protein is connected to DNA from the goat that controls in what tissue the protein is made. In this case it is the mammary gland and is made only during lactation," said Randy Lewis, a molecular biologist at the University of Wyoming who helped engineer the goats. "That cell is then combined with an egg to ultimately produce an embryo that has the gene incorporated into its DNA. The silk protein is then made when the female starts lactating."

Cone Snail

Don't be fooled by the gracefully swirled and mottled shell or their sedentary nature. Cone snails are one of nature's most dangerous creatures and their toxic venom can be fatal to humans. But in the right doses, some of those compounds can be useful.

"We started working on cone snails, to be honest, because we had nothing else to do at the time," said Olivera. He had taken a position at a university in the Philippines in the 1970s and his lab was ill-equipped to handle any but the most basic scientific experiments. "I collected shells as a hobby as a kid and I knew certain types of cone snails killed people ... Our goal was to purify components of the venom that might be responsible for it's lethality."

A fish-eating mollusk, the cone snail uses a harpoon sting to deliver its venom and kill nearby prey.

"Cone snails don't have a lot going for them mechanically as far as catching their prey," Olivera said. "They probably use their venom for more purposes than most other animals."

Olivera cited defense against predators and competitive interaction amongst other cone snails as possible uses of the venom, which contains about 150-200 different compounds and these can be unique between cone snail species. The diversity of compounds offers researchers a pharmacological library of compounds to work with.

In 2004, the FDA approved the use of the pain medication ziconotide, marketed as Prialt, derived from one of the conopeptide proteins from cone snail venom. Other potential uses for compounds from the snail venom include drugs for neurological pain, epilepsy, heart disease and stroke.

Join the Discussion
blog comments powered by Disqus
You Might Also Like...