Gene Connections Key to Brain Tumor Growth

ByABC News
July 14, 2009, 8:18 PM

July 15 -- TUESDAY, July 14 (HealthDay News) -- Researchers have identified a network of mutated genes and gene processes that, together, contribute to the development of glioblastomas, the deadliest type of brain tumor.

"There is not a single gene that accounts for the development of brain tumors," explained Dr. Markus Bredel, co-author of two related papers in the July 15 issue of the Journal of the American Medication Association. "It's the concert of those genes and the interaction of those genes that ultimately determine the progression of cancer."

Bredel, who is director of the Brain Tumor Institute Research Program at Northwestern University's Feinberg School of Medicine in Chicago, proposed that a combination of therapies targeting specific biological events might improve treatment outcomes for this type of cancer. Outcomes have remained stubbornly the same for about three decades.

"We hope that's the future of therapy -- that we can, over the long term, transfer this into a more chronic disease so patients could hopefully live 10 to 15 years," Bredel said. Development of a cure in that time frame is unlikely, he said.

People with glioblastomas now live an average of 12 to 14 months. U.S. Sen. Edward M. Kennedy (D-Mass.) was diagnosed in May 2008 with a malignant brain tumor.

"The authors have really made sense of these genetic changes and identified some of the pathways that seem to be crucial for glioblastoma development," said Dr. Boris Pasche, co-author of an accompanying editorial in the journal and associate director of the Comprehensive Cancer Center at the University of Alabama at Birmingham. "It's very exciting because it holds promise for identification of the Achilles' heel of this disease. If you can target several pathways that are implicated in a given disease, you can effectively change the course of the disease."

According to Bredel, up to 50 percent of the 30,000 to 40,000 genes in the human genome may be altered in glioblastoma.