New Technology to Root Out Terrorists

ByABC News
October 3, 2001, 4:02 PM

Oct. 4 -- Wouldn't it be great if instead of sending humans into the hills to search for a terrorist, we could send an expendable mechanical device that would recognize his face and his voice and maybe even his personal mannerisms?

We're decades, if not centuries, away from that kind of capability, but scientists are making significant progress in developing machines that function in a way that is roughly similar to how humans think and sort out information. It's a really tough challenge because the human brain's neural network our biological equivalent of a computer processor is one fantastic piece of equipment.

Some of the best minds in the world are working in this arena, but how do you build a machine that can come even close to duplicating the human brain and perform tasks that are so simple we take them for granted?

"It's hard to do that with a machine," says Joel Davis, who manages cognitive, neural and bio-molecular research for the Office of Naval Research. But that's not going to keep him and others from trying.

Inspired by Biology

He believes the blueprints for building the amazing machines of the future that can figure out some things for themselves will come from the world of biology.

What biological systems have that even the most powerful computers lack, he says, "is something we call sensory fusion."

"You walk down the street and you're getting auditory input from your ears and visual input from your eyes and tactile input from your feet, but you don't see these as separate things," Davis says. "It's all fused together in one dynamic picture."

Those different streams of information arrive first in an area of the brain called the superior colliculus, and some amazing things happen there. The brain cells in that region react to more than one stimuli, and scientists have been able to measure changes in the neurons as they are stimulated.

"You can look at the cells that respond to both visual and auditory stimuli, and when you deliver both of these together you get a response that's more than the sum of both responses," Davis says. In other words, the brain doesn't just add the two responses. It multiplies them, greatly increasing the value of the data it's receiving.