Air Traffic Controllers: Brain Monitoring to Keep Them Awake?
Brain-control tech could help detect fatigue, distraction.
April 15, 2011— -- Think you know what it means to put your mind to a task? Think again.
A new class of brain-computer interface technology could not only let you control devices and play games with your thoughts, but also help detect fatigue in air traffic controllers and other workers in high-stakes positions.
Researchers at the Swartz Center for Computational Neuroscience at the University of California, San Diego, have made it possible to place a cellphone call by just thinking about the number. They say the technology could also tell whether a person is actively thinking, or nodding off.
Tzzy-Ping Jung, a neuroscience researcher and associate director of the center, said the system uses brainwave sensors (or Electroencephalogram (EEG) electrodes) attached to a headband to measure a person's brain activity. The brain signals are then transferred to a cellphone through a Bluetooth device connected to the headband.
Applications Could Provide Hands-Free Dialing, Help for People with Disabilities
In the lab, he said, test subjects sit in front of a screen displaying 10 digits, each flashing at a different rate. The number 1, for example, may flash nine times per second, while the number 2 flashes at a slightly higher frequency.
As participants view each number, the corresponding frequency is reflected in the visual cortex in their brains, he said. That activity is picked up by the sensors, relayed through the wireless Bluetooth device and then used to dial numbers on the cell phone.
Assuming all goes according to plan, if you place the headband on your head, sit at the screen, and then view the digits 1-2-0-2-4-5-6-1-4-1-4, your thoughts alone should lead you to the White House switchboard.
Jung said that results vary from person to person, but many people can reach 90 or even 100 percent accuracy.
"Probably I was the worst subject. I think I reached 85 percent," he said.
For now, the technology is just in the developmental phase. But Jung, who has been studying neurological engineering since 1993, said, "We're trying to move from the lab to the real world, step by step."
In time, applications could potentially give consumers a hands-free way to use their cell phones or people with disabilities a new way to interact with the world. But, Jung said, more passive uses of the technology could already be used to detect fatigue or lapses in attention in people who work in fields where concentration is essential.