Doctors Transplant Vein Grown from Patient's Own Cells

The vein graft was a riff on a technique being put into action by scientists around the world to get around typical problems of organ transplantation. In 2008, European researchers stripped cells from a donated wind pipe and seeded it with a patient's own cells before transplanting it into a 30-year-old woman. In 2010, scientists at Massachusetts General Hospital did the same thing with a donated pair of lungs. A team at Wake Forest School of Medicine used a biodegradable mold smeared with bladder cells to grow bladders for a group of children in the 1990s.

Dr. Christopher Breuer, an associate professor of surgery at Yale School of Medicine, has also worked on growing blood vessels using a synthetic vessel skeleton lined with patients' bone marrow cells. He said the Swedish team will need to do more experiments to prove that their vessels are durable enough to replace high-pressure vessels close to the heart and to withstand the rigors of dialysis. But he said their achievement is a major step forward.

"The fact they were able to do this safely on a patient is fantastic," Breuer said.

Even though the results are exciting, doctors remain cautious about their implications for patients who need vein grafts for more common conditions, such as dialysis or coronary bypasses. The process of harvesting a donor's vein and covering it with the girl's own cells was nearly as complicated and costly as the process for an organ transplant.

"The organization and resources required for this process are significant and would severely limit the applicability of the treatment strategy to large groups of patients," said Dr. William Marston, chief of vascular surgery at University of North Carolina Hospitals.

Some cardiovascular surgeons said many patients having coronary bypasses have no shortage of their own arteries and veins that can be used in those surgeries. And many patients can't wait for treatment while doctors grow a vein for them.

Also, the fact that the graft needed repair after a year is a concern.

"A uniform conduit such as a perfectly sized and available bioengineered vein would be of great utility, but it needs to last closer to a lifetime, not a year," said Dr. John Calhoon, a professor of head and thoracic surgery at the University of Texas Health Science Center.

Sumitran-Holgersson said more work will need to be done to work out the kinks in the process and to test it in other patients. But she remains optimistic about scientists' ability to create personalized blood vessels and other organs, reducing the need for a lifetime of drugs and surgeries.

"This is a very exciting technique and one that can greatly improve a patient's quality of life after transplantation," she said. "I think we're going to see quite a bit of this in the future."

Page
  • 1
  • |
  • 2
Join the Discussion
blog comments powered by Disqus
 
You Might Also Like...