Solar-Power Breakthrough
Researchers have found a way to mimic the way plants store energy from the sun.
August 2, 2008 — -- Researchers have made a major advance in inorganic chemistry that could lead to a cheap way to store energy from the sun. In so doing, they have solved one of the key problems in making solar energy a dominant source of electricity.
Daniel Nocera, a professor of chemistry at MIT, has developed a catalyst that can generate oxygen from a glass of water by splitting water molecules. The reaction frees hydrogen ions to make hydrogen gas. The catalyst, which is easy and cheap to make, could be used to generate vast amounts of hydrogen using sunlight to power the reactions. The hydrogen can then be burned or run through a fuel cell to generate electricity whenever it's needed, including when the sun isn't shining.
Solar power is ultimately limited by the fact that the solar cells only produce their peak output for a few hours each day. The proposed solution of using sunlight to split water, storing solar energy in the form of hydrogen, hasn't been practical because the reaction required too much energy, and suitable catalysts were too expensive or used extremely rare materials. Nocera's catalyst clears the way for cheap and abundant water-splitting technologies.
Nocera's advance represents a key discovery in an effort by many chemical research groups to create artificial photosynthesis--mimicking how plants use sunlight to split water to make usable energy. "This discovery is simply groundbreaking," says Karsten Meyer, a professor of chemistry at Friedrich Alexander University, in Germany. "Nocera has probably put a lot of researchers out of business." For solar power, Meyer says, "this is probably the most important single discovery of the century."
The new catalyst marks a radical departure from earlier attempts. Researchers, including Nocera, have tried to design molecular catalysts in which the location of each atom is precisely known and the catalyst is made to last as long as possible. The new catalyst, however, is amorphous--it doesn't have a regular structure--and it's relatively unstable, breaking down as it does its work. But the catalyst is able to constantly repair itself, so it can continue working.