The Dark Secret of Electric Cars: Astounding Speed

No battery comes close to matching the energy that can be packed into a gallon of gasoline, called the energy density of the material. For electric vehicles to take over, that clearly has to change, and new reports of "breakthroughs" come out on almost a daily rate.

Just last week, the University of Colorado, Boulder, claimed it can now double the range of cars powered by a lithium-ion battery. Today's batteries, from cellphones to high performance cars, generate electricity by moving ions -- charged particles -- back and forth between two electrodes in a liquid electrolyte solution.

The Colorado researchers say they have found a way to replace the liquid electrolyte with a solid-state system, with much greater energy density, in which the ions move through a solid ceramic electrolyte, and they have the funding to move the technology closer to "becoming a commercial reality."

If so, that's serious stuff.

Meanwhile, researchers at the Department of Energy's Oak Ridge National Laboratory in Tennessee claim progress in producing a lithium-sulfur battery that packs four times the energy density of a conventional lithium-ion battery.

Much of the research is directed at better batteries for the small necessities of life -- cellphones, laptops, etc. -- and some of the work is truly astounding. Engineers at the University of Illinois at Urbana-Champaign announced in April that they have developed tiny "microbatteries" that pack a huge punch.

How huge? Say the start battery on your gasoline-powered car is dead. You could use your cellphone to jump-start the engine, according to the Illinois researchers. It better start quickly, because the battery, only a few millimeters in size, can't put out that much power for long.

Once you get the old beast started, you can drive it across the entire country with no worries about recharging. Gas stations are everywhere. That's not the case for electric vehicles.

That glamorous all-electric Tesla roadster might be able to zip along at 125 mph, but you can't drive it from Los Angeles to San Francisco without recharging, which can take all night. Scientists at MIT and Stanford have been working separately on a way to transmit electricity wirelessly. That might make it possible to recharge electric vehicles as they move along the highway.

Copper coils could be imbedded in the highway, the researchers say, creating a magnetic field that would generate a current in matching coils in the vehicle, thus recharging the batteries. The two sets of coils would operate at the same frequency, and only at that frequency, so a person could lie down on the highway and not be hurt as the energy transferred from ground to auto.

All these won't work, of course, but that's a lot of progress since GM first produced that nifty little car in 1996 that wiped out those Corvettes. The EV1 was leased in a pilot program to drivers in several states, but GM abandoned the program as it moved on to other electric vehicle projects, despite the fact that many of the drivers loved the vehicle.

Some even threatened to sue if GM repossessed the cars, but all the cars had been returned to the manufacturer by 2002.

Most were crushed, some were sent to museums and all but one were disabled, no longer a threat to Corvettes. The sole survivor is in the Smithsonian Institution.

Page
  • 1
  • |
  • 2
Join the Discussion
blog comments powered by Disqus
 
You Might Also Like...
See It, Share It
PHOTO: Year In Pictures
Damien Meyer/AFP/Getty Images
PHOTO: James Franco and Seth Rogen in The Interview.
Ed Araquel/Sony/Columbia Pictures/AP Photo
PHOTO: Patrick Crawford is pictured in this photo from his Facebook page.
Meteorologist Patrick Crawford KCEN/Facebook
PHOTO: George Stinney Jr., the youngest person ever executed in South Carolina, in 1944, is seen in this undated file photo.
South Carolina Department of Archives and History/AP Photo