Can Robot Worms Kill Cancer?
Microscopic mechanical worms may be deployed as cancer-seeking missiles.
May 13, 2008 — -- Scientists are creating tiny mechanical "nanoworms" that could zip through the human body like cruise missiles, finding cancerous tumors that are too small to be seen any other way.
That could lead to very early detection before the cancer even begins to spread, and ultimately these tiny vehicles — 3 million times smaller than an earthworm — may be able to deliver a lethal blow to the tumor.
"We want them to be able to release a drug and kill the tumor" without damaging adjacent tissue, said Michael Sailor, professor of chemistry and biochemistry at the University of California San Diego, who headed the research team. The team included scientists at UC Santa Barbara and the Massachusetts Institute of Technology who brought special skills to the project, which was revealed in a recent issue of the journal Advanced Materials.
The work is a significant advance in a hot-button field that is the cornerstone of many research projects around the world.
Scientists and engineers hope to create many incredibly small machines, such as nanoworms (so named because they are multi-jointed like earth worms) that can venture just about anywhere, including inside the human body. They will be designed for specific tasks, like the delivery of drugs to diseased organs, and then self-destruct and exit the body once their job has been completed.
The trick has been to come up with a design that allows the machines to escape the body's natural defense mechanisms and hang around long enough to get the job done, but not stay too long.
"Your body has all sorts of mechanisms to remove small molecules, big molecules, and even nano-particles or particulates like blood clots and anything that's not supposed to be there," Sailor said in an interview. That's obviously a good thing.
But organisms ranging from humans to lab rats are so good at ejecting toxic substances that it has been hard for scientists to come up with a material and a design that would fool the body's protective mechanisms long enough to get the job done.