Perfect Insulator Could Eliminate Heating Bills

With new insulator, body heat from one person could warm entire home.

ByABC News
February 26, 2010, 3:52 PM

Feb. 27, 2010— -- A perfect insulator, or a material that reflects heat while absorbing none of it, has been created by scientists at the Massachusetts Institute of Technology and Sandia National Laboratories.

Besides eliminating your heating bill, perfect insulators could make computers cooler and speed up cell phone downloads.

"All the heat that hits it gets shot back in the other direction," said Edwin Thomas, a scientist at MIT and co-author of a recent paper in the journal ACS Nano Letters describing the creation of a low-temperature perfect insulator. "If you could put the right material on the wall (of a home), the heat from your body would be enough to heat it."

Now the MIT scientists have created structures 10 nanometers across that manipulate even tinier hypersonic waves gigahertz in size. Most people know hypersonic waves by a different name however: heat. When a sound wave becomes incredibly tiny, it actually functions as a heat wave.

"Once you get into the regimen where you can affect a material's thermal properties this leads to other exciting possibilities," said Oskar Painter, a scientist at Caltech who wasn't involved with the MIT research.

Sound could control heat. Light could control electricity. A whole realm of new devices could arise from this technology said Painter, but it will take years before they end up in consumer's hands.

MIT isn't the only group working on perfect insulators. Another group of scientists from Sandia National Laboratories and the University of New Mexico are also hard at work creating new heat-controlling materials.

"We will soon start to make devices for manipulating photons, phonons and electrons, all at the same time," said Roy Olsson, a scientist at Sandia National Laboratories.

Right now the perfect insulators created by the MIT, Sandia, the University of New Mexico and other scientists only work at below freezing temperatures. The colder the temperature, the longer the wavelength, and the easier it is to manipulate the wave.