Liver Replacement? Human Cells Grow on Animal Liver Scaffolds

Bioartificial livers may be the next solution for organ donor shortages.

ByABC News
November 1, 2010, 8:01 AM

Nov. 1, 2010— -- BOSTON -- Researchers reported here that they have pared down animal livers to their basic structure of blood vessels and supporting structures and repopulated them with human liver cells -- a small step toward the ultimate goal of creating completely bioartificial livers.

After a week in a bioreactor, human liver cells placed onto this liver "scaffolding" began to show signs that the cells were functioning normally, according to Pedro Baptista of Wake Forest University in Winston-Salem, N.C., and colleagues.

Read this story on www.medpagetoday.com.

Baptista reported the group's findings during an oral session at the American Association for the Study of Liver Diseases meeting.

"We're looking into organ scaffolding because it offers a vascular system, and you can't really tissue engineer an organ without a vascular system," Baptista told MedPage Today.

"It's amazing because the cells recognize the chemistry of the matrix on their own and localize and attach in what we think are their native niches -- the endothelial cells attach to vascular structures and the hepatocytes attach in more parenchymal areas," he added.

Yet Baptista cautioned that the work is still very preliminary and his group is currently working on increasing the percentage of organ that gets repopulated with cells -- which currently stands at about 30 percent.

The purpose of creating bioartificial livers is to mitigate the organ donor shortage -- a persistent and growing problem in the United States. During his talk, Baptista said the most recent statistics show that 109,000 people are awaiting organ transplants, 16,000 of whom are waiting for a donor liver.

Generating a liver scaffold has been done in the past -- and the technique can also be applied to other organs including the kidney and lungs -- but the organs had only been repopulated with animal cells.