Gene Mutation Could Be Key to Rare Blood Vessel Disease

ByABC News
July 22, 2009, 8:28 PM

July 23 -- WEDNESDAY, July 22 (HealthDay News) -- Mutations in a protein called thrombomodulin, which is involved in blood clotting and preventing cell damage, may be the cause of some atypical HUS, a new Canadian study suggests.

The finding might lead to new therapies for this rare disease, researchers say. There are about 300 children affected by it in the United States, and it can be fatal, according to the Foundation for Children with Atypical Hemolytic-Uremic Syndrome (aHUS).

"Identification of all of the mechanisms leading to aHUS will hopefully lead to new treatments that are currently lacking and urgently needed," said lead researcher Dr. Edward M. Conway, director of the Centre for Blood Research at the University of British Columbia Life Sciences Centre in Vancouver.

HUS is a serious condition, most often seen in children. The major cause of the disorder is damage to the endothelial cells that form the inner lining of blood vessels, Conway explained. This leads to clotting of the blood in small blood vessels, and deforming of red blood cells, causing anemia; and loss of platelets, which causes bleeding and inadequate blood supply, particularly to the kidneys, which leads to kidney failure, he said.

The trigger for the endothelial cell injury in HUS is most often a toxin that is released from bacteria after ingestion of contaminated water or food, Conway said.

"There is, however, a more rare 'atypical' form of HUS that is not induced by the bacterial toxin," he said. "In contrast to the more common form, patients with aHUS often do poorly."

Approximately 25 percent of patients with aHUS die, and about 50 percent end up needing dialysis for kidney failure, according to Conway, who added, "aHUS is seen in individuals who have, in their blood, excess activation of the so-called complement system."

The complement system is a complex set of proteins in the blood and on cells that work together to rapidly destroy any invading pathogens such as bacteria or viruses, but without damaging any of the host cells, particularly the blood vessel endothelial cells, Conway explained.