Scientists Use Non-Embryonic Stem Cells to Create Healthy Mice

ByABC News
July 23, 2009, 2:18 PM

July 24 -- THURSDAY, July 23 (HealthDay News) -- The mouse may be named "Tiny," but what it represents in the world of science is anything but that.

According to Chinese researchers, the birth of Tiny (and Tiny's brethren) marks a milestone in stem cell research: Healthy, fertile animals grown using so-called pluripotent stem cells (iPS) derived not from embryonic cells, but rather cells sourced from adult mice.

The finding, published in the July 23 issue of Nature, was described during a press conference held Wednesday in London.

"To our knowledge, it's the first time" this has been achieved, said co-researcher Qi Zhou, associate director of zoology at the State Key Laboratory of Reproductive Biology with the Institute of Zoology at Beijing's Chinese Academy of Sciences.

The successful birth "demonstrate(s) the practicality of using IPS cells for cellular regeneration," added Zhou's colleague Fanyi Zeng, a professor at Shanghai Jiao Tong University, and associate director of the Shanghai Institute of Medical Genetics at Shanghai Children's Hospital.

The new technique to create iPS cells was initially developed three years back. The cells are adult cells that lack the natural ability to differentiate into multiple cell types but are artificially reprogrammed to do so by scientists working in the laboratory. This makes them remarkably similar in character (if not identical) to embryonic stem cells, the Chinese researchers said.

iPS cells could, in theory, serve as an alternative to more controversial embryonic stem cells, whose natural therapeutic potential lies in their ability to develop into the cellular material of any number of muscles, tissues and organs, as well as blood and bone. In March, President Barack Obama lifted the eight-year ban on research using new embryonic stem cell lines that had been imposed by the Bush Administration. However, the controversy continues.

Until now, real progress in iPS cell research has been tough to achieve. The Chinese team described prior efforts to reprogram the cells as "slow and inefficient." As well, past attempts to prove the "complete developmental potential" of IPS cells -- by producing a live animal -- had failed.