Cancer Genomics: Targeting Treatment to the Patient

Share
Copy

"We're able to get out of that biopsy material the DNA and the RNA, the nucleic materials, so that we can look at the genes and the proteins to see what is wrong with that tumor, compare it to other tumors, and see if these genes are telling us which chemotherapy or which targeted therapy to use," said Dr. Harvey Pass, a cancer researcher at NYU Langone Medical Center who is also on the advisory board of Rosetta Genomics.

"This is the model of personalized cancer therapy," says Dr. Marc Ladanyi, chief of the Molecular Diagnostics Service at Memorial Sloan-Kettering Cancer Center in New York. "We don't just look at [a tumor] under the microscope to see how aggressive it is; we also characterize which mutations are present in the cancer, so that from the get-go you know if your cancer can be treated with specific drugs."

At Sloan-Kettering, patients with non-small cell lung cancer -- the most common form of the disease -- have their cancer cells tested for over 40 different mutations. Once a mutation is identified, doctors can suggest specific treatments based on the patient's cancer mutation.

Clinical trials are underway at the M.D. Anderson center to determine the success rate of genetic tests, such as the ones performed at Memorial Sloan-Kettering, not only in lung cancer but in metastatic colorectal cancer as well.

Cancer Genomics: Targeting the Treatment to the Patient

Currently, the most widely accepted genetic test used to guide cancer treatment is that for HER2, a mutation present in 15-20 percent of breast cancer patients. The HER2 test is now a standard recommendation for newly diagnosed breast cancer patients, because women with the HER2 subtype are more receptive to certain breast cancer therapies.

Genetic testing on tumor specimens, however, can be plagued by inaccuracy. So researchers at Johns Hopkins University in Baltimore are trying to take genetic testing to a new level. Rather than taking a closer look at the cancer cells, Dr. Bert Vogelstein and his colleagues there have developed a method that uses genomic sequencing to create blood tests. These tests, the said, could be used to monitor tumor levels after treatment and determine cancer recurrence.

"Using this approach, we can develop biomarkers for potentially any cancer patient," says Dr. Victor Velculescu, co-director of the cancer biology program at Johns Hopkins.

Such is the hope of Wigbels, who is now trying to make the treatments that have helped him more accessible to everyone. Following his experience, he founded TakeAimAtCancer.org to raise money for genomic cancer research.

For more on Wigbels's story, visit TakeAimAtCancer.org.

-- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659. -- This embed didnt make it to copy for story id = 11606659.
Page
  • 1
  • |
  • 2
Join the Discussion
You are using an outdated version of Internet Explorer. Please click here to upgrade your browser in order to comment.
blog comments powered by Disqus
 
You Might Also Like...
See It, Share It
PHOTO: Sabrina Allen is shown in this photo provided by the National Center for Missing and Exploited Children.
National Center for Missing and Exploited Children
PHOTO: Adam Sandler arrives at the premiere of Men, Women & Children at The Directors Guild of America, Sept. 30, 2014, in Los Angeles.
Dan Steinberg/Invision/AP Photo
Lovable Panda Triplets Get Named
ChinaFotoPress/Getty Images