Engineers Produce a Rocket-Powered Human Arm
A miniature rocket motor may be the solution to powering a synthetic human arm.
Aug. 28, 2007 — -- Engineers in Michael Goldfarb's creative lab at Vanderbilt University have come up with a possible solution to a whopping technological challenge: How do you build a synthetic human arm that will restore full functions to an amputee, and where do you get the kind of power needed to run it?
Batteries aren't a good solution because they weigh too much and they don't pack enough punch.
The answer, Goldfarb said, is a miniature rocket motor.
Yup. The kind of rocket that is used to control the attitude of the space shuttle while it's on orbit may be just the ticket, he added.
And furthermore, he's done it. His lab has produced a robotic human arm that comes surprisingly close to replicating the complex functions of the human arm, and it is powered by a tiny rocket motor. It isn't ready for prime time yet, but as a proof of concept, it's pretty impressive.
For several years Goldfarb, a professor of mechanical engineering at Vanderbilt, has been pioneering in the development of incredibly small robots that can do things like slip behind enemy lines and sniff out chemical weapons, and he has returned to his original inspiration for his ideas. If you want to make a robot that can mimic nature, look at biological systems.
Goldfarb's research is part of a large scale program supported by the Defense Advanced Research Project Agency. Two other prosthetic arms are under development at the Advanced Physics Laboratory at Johns Hopkins University in Baltimore, which is running the project. But Goldfarb's approach is very different.
Although the current research is directed toward development of a prosthetic arm, there would be many applications for a device that is as sophisticated as something we tend to take for granted. The human arm is, indeed, an amazing piece of equipment.
From the elbow to the fingertips, the human arm has "26 degrees of freedom, which means it can move that many joints," Goldfarb said. By contrast, the robotic arm aboard the space shuttle, which has been used for everything from launching satellites to repairing the orbiter, has only six degrees of freedom. So how do you get from six to 26?