Brave New World, Too Small to See
Nanotechnology could rebuild the world one atom at a time.
April 1, 2009 — -- Ever try swimming with your boots on? Or threading a needle while blindfolded? How about assembling a jigsaw puzzle with both hands tied behind your back?
All of those challenges are pretty close to impossible, but they are child's play compared to what scientists are trying to accomplish in the exploding world of nanotechnology. The field involves the manipulation of matter on the atomic level, producing new materials in which the whole is much more than the sum of its parts.
It has enormous potential, not only in high tech fields like medicine and energy, but in nearly everything from your "kitchen to your space shuttle," said physicist Oleg Gang, who leads a research project at Brookhaven National Laboratory in Upton, N.Y.
"I believe we (in nanotechnology) are approximately where we were in chemistry 100 years ago," Gang said in a telephone interview.
At that time, the production of what are now basic products, like plastic and polymers, was expensive and illusive, because scientists didn't really understand the fundamental processes. But as understanding grew, so did the manufacturing techniques, and now "plastics are everywhere."
The same should happen with nanotechnology, Gang said, but right now, scientists are barely knocking at the door.
The modern obsession with building things one atom at a time was launched in an electrifying lecture given by physicist Richard Feynman at the California Institute of Technology in 1959, titled "There's plenty of room at the bottom."
Feynman challenged a roomful of scientists -- some of whom are leaders in the field today -- to work on ways to build devices by manipulating one atom at a time, thus controlling the entire process and ending up with a cheaper, better way to build just about anything. In theory, it should be possible to pour the contents of one beaker into another and have it spit out silicon chips, or candy bars, or whatever.
That classic lecture set science on a course that has turned out to be very daunting, because before Feynman's dream can be realized, scientists must first understand how nature manages to do it so easily. Living organisms, including humans, are indeed assembled from the bottom up as atoms do what the genetic code tells them to do, one at a time.