New autism genes discovered
WASHINGTON -- Harvard researchers have discovered half a dozen new genes involved in autism that suggest the disorder strikes in a brain that can't properly form new connections.
The findings also may help explain why intense education programs do help some autistic children — because certain genes that respond to experience weren't missing, they were just stuck in the "off" position.
"The circuits are there but you have to give it an extra push," said Dr. Gary Goldstein of the Kennedy Krieger Institute in Baltimore, which wasn't involved in the gene hunt but is well-known for its autism behavioral therapy.
The genetics suggest that "what we're doing makes sense when we work with these little kids — and work and work and work — and suddenly get through," he said.
But the study's bigger message is that autism is too strikingly individual to envision an easy gene test for it. Instead, patients are turning out to have a wide variety, almost a custom set, of gene defects.
"Almost every kid with autism has their own particular cause of it," said Dr. Christopher Walsh, chief of genetics at Children's Hospital Boston, who led the research published in Friday's edition of the journal Science.
Autism spectrum disorders include a range of poorly understood brain conditions, from the mild Asperger's syndrome to more severe autism characterized by poor social interaction, impaired communication and repetitious behaviors.
It's clear that genes play a big role in autism, from studies of twins and families with multiple affected children. But so far, the genetic cause is known for only about 15% of autism cases, Walsh said.
So Walsh's team took a new tack. They turned to the Middle East, a part of the world with large families and a tendency for cousins to marry, characteristics that increase the odds of finding rare genes. They recruited 88 families with cousin marriages and a high incidence of autism, from Jordan, Saudi Arabia, Kuwait, Oman, Pakistan, Qatar, Turkey and the United Arab Emirates. They compared the DNA of family members to search for what are called recessive mutations — where mom and dad can be healthy carriers of a gene defect but a child who inherits that defect from both parents gets sick.